| Description |
x, 92 leaves : illustrations ; 29 cm |
| Summary |
"A new model reference adaptive control design method with guaranteed transient performance using neural networks is proposed in this thesis. With this method, stable tracking of a desired trajectory is realized for nonlinear system with uncertainty, and modified state observer structure is designed to enable desired transient performance with large adaptive gain and at the same time avoid high frequency oscillation. The neural network adaption rule is derived using Lyapunov theory, which guarantees stability of error dynamics and boundedness of neural network weights, and a soft switching sliding mode modification is added in order to adjust tracking error. The proposed method is tested by different theoretical application problems simulations, and also Caterpillar Electro-Hydraulic Test Bench experiments. Satisfying results show the potential of this approach"--Abstract, leaf iv. |
|