| Description |
ix, 108 leaves : illustrations ; 28 cm. |
| Summary |
"Expectation Maximization (EM) is a general purpose algorithm for solving maximum likelihood estimation problems in a wide variety of situations best described as incomplete data problems. The incompleteness of the data may arise due to missing data, truncated distributions, etc. One such case is a mixture model, where the class association of the data is unknown. In these models, the EM algorithm is used to estimate the parameters of parametric mixture distributions along with the probabilities of occurrence. In this thesis, the EM algorithm is employed to estimate different mixture models for raw single and multi-band electro-optical Infra Red (IF) data"--Abstract, leaf iii. |
|