Theses/Dissertations
Author Modugu, Rajashekhar Reddy, 1987-

Title Efficient modular arithmetic units for low power cryptographic applications / by Rajashekhar Reddy Modugu.

Published ©2010.
LOCATION CALL # STATUS
 MST DEPOSITORY  THESIS T 9741/9768  MICROFILM    NOT CHECKED OUT
 MST Thesis  THESIS T 9745    NOT CHECKED OUT
Description x, 67 leaves : illustrations ; 28 cm
Summary "The demand for high security in energy constrained devices such as mobiles and PDAs is growing rapidly. This leads to the need for efficient design of cryptographic algorithms which offer data integrity, authentication, non-repudiation and confidentiality of the encrypted data and communication channels. The public key cryptography is an ideal choice for data integrity, authentication and non-repudiation whereas the private key cryptography ensures the confidentiality of the data transmitted. The latter has an extremely high encryption speed but it has certain limitations which make it unsuitable for use in certain applications. Numerous public key cryptographic algorithms are available in the literature which comprise modular arithmetic modules such as modular addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic algorithms have been proposed based on modular arithmetic which are scalable, do word based operations and efficient in various aspects. The modular arithmetic modules play a crucial role in the overall performance of the cryptographic processor. Hence, better results can be obtained by designing efficient arithmetic modules such as modular addition, multiplication, exponentiation and squaring. This thesis is organized into three papers, describes the efficient implementation of modular arithmetic units, application of these modules in International Data Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm implementation using the existing techniques and using the proposed efficient modular units. The third paper describes the fault tolerant design of a modular unit which has online self-checking capability"--Abstract, leaf iv.
Notes Vita.
M.S. Missouri University of Science and Technology 2010.
Includes bibliographical references.
Subjects Data encryption (Computer science) -- Mathematical models.
Modular arithmetic.
Algorithms.
Fault-tolerant computing.
Trees (Graph theory)
Other Titles MST thesis. Computer Engineering (M.S., 2010).
Fast low-power modulo 2[superscript N]+1 multiplier design.
Efficient idea crypto-hardware using novel modular arithmetic components.
Efficient on-line self-checking modulo 2[superscript N]+1 multiplier design.
Additional Keywords Residue number system.
OCLC/WorldCat Number 723137684