Theses/Dissertations
Author Kanagachalam, Vijay.

Title Electromagnetic compatibility of integrated circuit clock design / by Vijay Kanagachalam.

Published c2012
LOCATION CALL # STATUS
 MST DEPOSITORY  THESIS T 10068, 10109/10113, 10115/10118, 10120/10123, 10126/10128, 10131  MICROFILM    LIB USE ONLY
 MST Thesis  THESIS T 10116    NOT CHECKED OUT
Description ix, 59 leaves : illustrations ; 29 cm
Summary "With advancements in technology, transistor sizes are shrinking resulting in reduced power supply voltage and thereby reduced noise margin which makes the devices susceptible to electromagnetic noises. The trend of integrating more circuits on a single die at ever growing operating frequency increases interference among circuits and with the outside world. In order to make circuits electromagnetically compatible, it is essential to reduce emissions from the circuit and understand the causes of failure due to interference of noise from other sources coupling into the circuit so that a robust design can be created. Two topics are explored in this thesis. The first topic deals with a case study of the immunity of low power Pierce crystal oscillators which includes the cause of failures and its mechanism. This knowledge can be used to design circuits which may have better immunity to those failure modes. The second chapter presents a preliminary study on using current mode logic (CML) for reducing emissions from the clock distribution network (CDN), which is one of the biggest contributors of emissions in a digital IC. A simple clock tree is designed with CML and is compared with a clock tree designed using standard single-ended CMOS logic, by analyzing its performance in terms of power consumption, noise, jitter, and rise and fall time"--Abstract, leaf iii.
Notes Vita.
M.S. Missouri University of Science and Technology 2012.
Includes bibliographical references (leaves 57-58).
Subjects Integrated circuits -- Design.
Electromagnetic compatibility.
Electromagnetic interference -- Control.
Other Titles IC immunity - impact of EFT on low power crystal oscillators and its failure mechanisms.
Impact of a CML-based clock distribution network on IC emissions.
MST thesis. Electrical Engineering (M.S., 2012)
OCLC/WorldCat Number 841765753